Behavioural Analysis of the Modified Lotka–Volterra Predictor-Prey Model Using a Computer Simulation

¹Olabanjo O. A., ²Wusu A. S.²Akanbi M. A. ¹Aribisala B. S.

¹Computer Science Department, ²Department of Mathematics, Lagos State University

October 11, 2017

Introduction

- Problem Identification
- Model Formulation and Assumptions

- Problem Identification
- Model Formulation and Assumptions
- Stability Property of Model Solution

- Problem Identification
- Model Formulation and Assumptions
- Stability Property of Model Solution
- S Phase Portrait and Field Directions of the Model

- Problem Identification
- Model Formulation and Assumptions
- Stability Property of Model Solution
- S Phase Portrait and Field Directions of the Model
- 6 Model Interpretation and Conclusion

Introduction

Classical Predator-Prey Model ([2], [5], [3], [7])

$$\frac{dx}{dt} = ax(t) - bx(t)y(t)$$
$$\frac{dy}{dt} = -cy(t) + dx(t)y(t)$$

- Population of Prey at time t: x(t)
- Population of Predator at time t: y(t)

Aim Modify (1) to ensure asymptotic stability.

Olabanjo O. A., Wusu A. S., Akanbi M. A. and Aribisala B. S. Lotka–Volterra Predictor-Prey Model

(1)

• The predators eat the prey and the prey live on the available natural food in the environment.

- The predators eat the prey and the prey live on the available natural food in the environment.
- Excessive consumption of prey reduces the food supply of the predators.

- The predators eat the prey and the prey live on the available natural food in the environment.
- Excessive consumption of prey reduces the food supply of the predators.
- A dwindling in predator's population will result in a significant increase in the prey's population.

- The predators eat the prey and the prey live on the available natural food in the environment.
- Excessive consumption of prey reduces the food supply of the predators.
- A dwindling in predator's population will result in a significant increase in the prey's population.
- As the prey population increases, the food supply of the predator grows and so does the predators' population.

Model Formulation and Assumptions

In this cyclic situation, one asks whether the cycle continues indefinitely or does one of the species eventually go into extinction.

Modification

Introduction of degree of internal competition of the prey and predator for their limited resources.

Assumptions

The degree of internal competition of the prey and predator are proportional to the square of the prey and predator populations respectively.

Proposed Model

$$\frac{dx}{dt} = ax(t) - bx(t)y(t) - ex^{2}(t)$$

$$\frac{dy}{dt} = -cy(t) + dx(t)y(t) - fy^{2}(t),$$
(2)

where a, b, c, d, e, f are positive constants.

Critical Points of (2)

$$(x_1, y_1) = \left(0, -\frac{c}{f}\right)$$

$$(x_2, y_2) = \left(-\frac{-af - bc}{bd + ef}, -\frac{ce - ad}{bd + ef}\right)$$

$$(x_3, y_3) = (0, 0)$$

$$(x_4, y_4) = \left(\frac{a}{e}, 0\right)$$
(3)

Jacobian Matrix of (2)

$$J(x,y) = \begin{pmatrix} \partial_x f(x,y) & \partial_y f(x,y) \\ \partial_x g(x,y) & \partial_y g(x,y) \end{pmatrix}$$
$$= \begin{pmatrix} a - by - 2ex & -bx \\ dy & -c + dx - 2fy \end{pmatrix}$$
(4)

Evaluating (4) respectively at the four critical points (3) results in

$$J_1(x,y) = \begin{pmatrix} a + \frac{bc}{f} & 0\\ -\frac{cd}{f} & c \end{pmatrix},$$
(5)

$$J_2(x,y) = \begin{pmatrix} -\frac{e(af+bc)}{bd+ef} & -\frac{b(af+bc)}{bd+ef} \\ \frac{d(ad-ce)}{bd+ef} & \frac{cef-adf}{bd+ef} \end{pmatrix}$$
(6)

Eigenvalues of Proposed Model

$$J_{3}(x,y) = \begin{pmatrix} a & 0 \\ 0 & -c \end{pmatrix}$$

$$J_{4}(x,y) = \begin{pmatrix} -a & -\frac{ab}{e} \\ 0 & \frac{ad}{e} - c \end{pmatrix}$$
(8)

Olabanjo O. A., Wusu A. S., Akanbi M. A. and Aribisala B. S. Lotka–Volterra Predictor-Prey Model

10/23

The eigenvalues of (6), (5), (7) and (8) respectively are

$$\lambda_{2} = \frac{1}{2(bd+ef)} \left(-bce - adf - aef + cef - \sqrt{\left((adf + aef + bce - cef)^{2} - 4\left(a^{2}bd^{2}f + a^{2}def^{2} + ab^{2}cd^{2} - ace^{2}f^{2} - b^{2}c^{2}de - bc^{2}e^{2}f \right) \right)} \right)$$

$$\mu_{2} = \frac{1}{2(bd+ef)} \left(-bce - adf - aef + cef + \sqrt{\left((adf + aef + bce - cef)^{2} - 4\left(a^{2}bd^{2}f + a^{2}def^{2} + ab^{2}cd^{2} - ace^{2}f^{2} - b^{2}c^{2}de - bc^{2}e^{2}f \right) \right)} \right)$$

$$(9)$$

Eigenvalues of Proposed Model

$$\lambda_1 = c$$

$$\mu_1 = \frac{af + bc}{f}$$
(10)

$$\lambda_3 = a \ \mu_3 = -c$$
 (11

$$\lambda_4 = -a$$

$$\mu_4 = \frac{ad - ce}{e}$$
(12)

Olabanjo O. A., Wusu A. S., Akanbi M. A. and Aribisala B. S. Lotka-

Lotka–Volterra Predictor-Prey Model

12/23

Stability of Proposed Model

Eigenvalues	Linear System	Nonlinear System	
$\lambda,\mu\in\mathbb{R}$			
$\lambda > \mu > 0$	Nodal Source (Unstable)	Nodal Source (Unstable)	
$\lambda < \mu < 0$	Nodal Sink (Stable)	Nodal Sink (Stable)	
$\lambda > 0 > \mu$	Saddle point (Unstable)	Saddle point (Unstable)	
$\lambda = \mu > 0$	Degenerate Source or Nodal Source (Unstable) depending of the geometric multiplicity of λ	Source (Degenerate, Nodal, Spiral Source de- pending on the nonlinear terms)	
$\lambda=\mu<0$	Degenerate Sink or Nodal Sink (Stable) depending of	Sink (Degenerate, Nodal, Spiral Sink) (Stable de-	

Stability of Proposed Model

Eigenvalues	Linear System	Nonlinear System	
$\lambda,\mu\in\mathbb{C}$			
$Re(\lambda) > 0$	Spiral Source (Unsta- ble)	Spiral Source (Unsta- ble)	
$Re(\lambda) < 0$	Spiral Sink (Stable)	Spiral Sink (Stable)	
$Re(\lambda) = 0$	Center (Stable)	Center, Spiral Sink , Spiral Source (Stabil- ity cannot be deter- mined based on λ)	

Phase Portrait and Field Directions of the Model

Figure 1: Phase portrait and population plots for (2) with a = 2, b = 1.1, c = 1, d = 0.9, e = f = 0.1

Olabanjo O. A., Wusu A. S., Akanbi M. A. and Aribisala B. S. Lotka–Volterra Predictor-Prey Model

Phase Portrait and Field Directions of the Model

Figure 2: Phase portrait and population plots for (2) with a = 0.9, b = 0.1, c = 0.1, d = 0.1, e = f = 0.1

Olabanjo O. A., Wusu A. S., Akanbi M. A. and Aribisala B. S. Lotka–Volterra Predictor-Prey Model

Phase Portrait and Field Directions of the Model

Figure 3: Phase portrait and population plots for (2) with a = 0.9, b = 0.1, c = 0.1, d = 0.1, e = 2.5, f = 1.9

Olabanjo O. A., Wusu A. S., Akanbi M. A. and Aribisala B. S. Lotka–Volterra Predictor-Prey Model

Model Interpretation

From Figure 1, Figure 2 and Figure 3, it is clear that the stability at the various critical depends on the values of the model's parameters.

Model Interpretation

Based on the introduction of the degree of internal competition between the prey and the predators, we see from Figure 1, Figure 2 and Figure 3, that the trajectories of the model are not periodic and tend to equilibrium level with time.

Model Interpretation

Olabanjo O. A., Wusu A. S., Akanbi M. A. and Aribisala B. S. Lotka-Volterra Predictor-Prey Model 18/23

Conclusion

The simulation reveals that neither the prey nor the predator will become extinct with time.

Thank You

- Darwin, C., On the origin of species by means of natural selection, or, the preservation of favoured races in the struggle for life, London: J. Murray., (1859).
- Lotka, A. J., Analytical note on certain rhythmic relations in organic systems, Proc. Nat. Acad, Vol(6), pp: 410–415, (1920).
- Kingsland, Sh. E., *Modeling nature*, University of Chicago Press, (1995).

- Malthus T. R., An essay on the principle of population as it affects the future improvement of society, London, Printed for J. Johnson, in St. Paul's Church-yard, (1798).
- Volterra, V., Fluctuations in the abundance of a species considered mathematically, Nature, Vol(118), pp: 558–560, (1926).
- Volterra, V., Sulle fluttuazioni biologiche, Rendiconti del Seminario Matematico e Fisico di Milano, Vol(3). no(1), pp: 154–174, (1929).

Boyce W, E., DiPrima R. C., Elementary differential equations and boundary value problems, John Wiley & Sons, Inc., New York. (2001).