Explicit Fourth-Derivative Two-Step Linear Multistep Method for Ordinary Differential Equations (ODEs)

${ }^{1}$ Ashiribo S. Wusu ${ }^{2}$ Moses A. Akanbi
1,2 Department of Mathematics
Lagos State University

October 11, 2017

Outline

© Introduction

Outline

© Introduction

(2) Construction of Method

Outline

© Introduction

(2) Construction of Method

3 Qualitative Properties of Constructed Method

Outline

(1) Introduction
(2) Construction of Method
(3) Qualitative Properties of Constructed Method

4 Numerical Examples

Outline

(1) Introduction
(2) Construction of Method
(3) Qualitative Properties of Constructed Method

4 Numerical Examples
(5 Conclusion

Introduction

Problem Considered

The first-order initial value problem

$$
\begin{equation*}
\mathbf{u}^{\prime}=\mathbf{f}(t, \mathbf{u}), \quad t \in\left[t_{0}, T\right], \quad \mathbf{u}\left(t_{0}\right)=\eta_{0} \tag{1}
\end{equation*}
$$

where $\mathbf{f}: \mathbb{R} \times \mathbb{R}^{n} \mapsto \mathbb{R}^{n}, \mathbf{u}, \eta_{0} \in \mathbb{R}^{n}$ and $t_{0}, T \in \mathbb{R}$.

Construction of Method

Form of Method to be Constructed

$$
\begin{align*}
& u_{n+2}-u_{n}= \sum_{i=0}^{3} h^{i+1} \sum_{j=0}^{1} \beta_{i j} f_{n+j}^{(i)} \\
&=h\left(\beta_{00} f_{n}+\beta_{01} f_{n+1}\right)+ \\
& h^{2}\left(\beta_{10} f_{n}^{(1)}+\beta_{11} f_{n+1}^{(1)}\right)+ \\
& h^{3}\left(\beta_{20} f_{n}^{(2)}+\beta_{21} f_{n+1}^{(2)}\right)+ \\
& h^{4}\left(\beta_{30} f_{n}^{(3)}+\beta_{31} f_{n+1}^{(3)}\right) \tag{2}
\end{align*}
$$

Construction of Method

Associated Linear Difference Operator

$$
\begin{align*}
& \mathcal{L}[h, \gamma] u(t)= u(t+2 h)-u(t)- \\
& h\left(\beta_{00} u^{(1)}(t)+\beta_{01} u^{(1)}(t+h)\right)- \\
& h^{2}\left(\beta_{10} u^{(2)}(t)+\beta_{11} u^{(2)}(t+h)\right)- \\
& h^{3}\left(\beta_{20} u^{(3)}(t)+\beta_{21} u^{(3)}(t+h)\right)- \\
& h^{4}\left(\beta_{30} u^{(4)}(t)+\beta_{31} u^{(4)}(t+h)\right) \tag{3}
\end{align*}
$$

$$
\gamma:=\left(\beta_{00}, \beta_{01}, \beta_{10}, \beta_{11}, \beta_{20}, \beta_{21}, \beta_{30}, \beta_{31}\right)
$$

Construction of Method

Corresponding Dimensionless Moment

$$
\begin{equation*}
L_{m}^{*}(\gamma):=\left.h^{-m} \mathcal{L}[h, \gamma] t^{m}\right|_{t=0} \tag{4}
\end{equation*}
$$

Associated Algebraic System
Examining the algebraic system

$$
\begin{equation*}
L_{m}^{*}(\gamma)=0, \quad m=0,1,2, \cdots, M-1 \tag{5}
\end{equation*}
$$

to find out the maximal M for which it is compatible.

Construction of Method

Resulting Algebraic System from (5)

$$
\left.\begin{array}{l}
L_{1}^{*}(\gamma)=-\beta_{00}-\beta_{01}+2=0 \\
L_{2}^{*}(\gamma)=-2\left(\beta_{01}+\beta_{10}+\beta_{11}-2\right)=0 \\
L_{3}^{*}(\gamma)=-3 \beta_{01}-6 \beta_{11}-6 \beta_{20}-6 \beta_{21}+8=0 \\
L_{4}^{*}(\gamma)=-4\left(\beta_{01}+3 \beta_{11}+6 \beta_{21}+6 \beta_{30}+6 \beta_{31}-4\right)=0 \\
L_{5}^{*}(\gamma)=-5 \beta_{01}-4\left(5 \beta_{11}+15 \beta_{21}+30 \beta_{31}-8\right)=0 \tag{6}\\
L_{6}^{*}(\gamma)=-2\left(3 \beta_{01}+15 \beta_{11}+60 \beta_{21}+180 \beta_{31}-32\right)=0 \\
L_{7}^{*}(\gamma)=-7 \beta_{01}-42 \beta_{11}-210 \beta_{21}-840 \beta_{31}+128=0 \\
L_{8}^{*}(\gamma)=-8\left(\beta_{01}+7 \beta_{11}+42 \beta_{21}+210 \beta_{31}-32\right)=0 \\
L_{9}^{*}(\gamma)=-9 \beta_{01}-8\left(9 \beta_{11}+63 \beta_{21}+378 \beta_{31}-64\right)=0 .
\end{array}\right\}
$$

Construction of Method

Compatibility

The system (6) is compatible for the set

$$
\begin{equation*}
\left\{L_{1}^{*}(\gamma)=0, L_{2}^{*}(\gamma)=0, \cdots, L_{8}^{*}(\gamma)=0\right\} \tag{7}
\end{equation*}
$$

Maximal M for Compatibility
The maximal M for which (5) is compatible is 9 .
Classical Fitting Space

$$
\begin{equation*}
\left\{1, t, t^{2}, t^{3}, t^{4}, t^{5}, t^{6}, t^{7}, t^{8}, t^{9}\right\} \tag{8}
\end{equation*}
$$

Construction of Method

Solving (7) results in

Coefficients of Constructed Method

$$
\begin{array}{ll}
\beta_{00}=34, & \beta_{20}=\frac{20}{7}, \\
\beta_{01}=-32, & \beta_{21}=-\frac{80}{21}, \tag{9}\\
\beta_{10}=\frac{110}{7}, & \beta_{30}=\frac{22}{105}, \\
\beta_{11}=\frac{128}{7}, & \beta_{31}=\frac{16}{35}
\end{array}
$$

Construction of Method

Nomenclature of Constructed Method (FD2LMM)
Fourth-Derivative Two-Step Explicit Linear Multistep Method
Constructed Method

$$
\begin{align*}
& u_{n+2}-u_{n}=h\left(34 f_{n}-32 f_{n+1}\right)+ \\
& \frac{1}{7} h^{2}\left(110 f_{n}^{(1)}+128 f_{n+1}^{(1)}\right)+ \\
& \frac{1}{21} h^{3}\left(60 f_{n}^{(2)}-80 f_{n+1}^{(2)}\right)+ \\
& \frac{1}{105} h^{4}\left(22 f_{n}^{(3)}+48 f_{n+1}^{(3)}\right) \tag{10}
\end{align*}
$$

Qualitative Properties of Constructed Method

Lemma (Order of the FD2LMM method)

The FD2LMM method (10), and hence the associated operator L_{m}^{*} defined by (4) have order p if and only if

$$
\begin{equation*}
L_{r}^{*} \equiv 0, \quad r=0,1, \cdots, p, \quad L_{r+1}^{*} \not \equiv 0 . \tag{11}
\end{equation*}
$$

Qualitative Properties of Constructed Method

Theorem

The FD2LMM method (10) is of order 8.

Proof

Since with (9), $L_{m}^{*}=0$ for $m=0,1, \cdots, 8$, and

$$
\begin{equation*}
L_{9}^{*}:=-9 \beta_{01}-8\left(9 \beta_{11}+63 \beta_{21}+378 \beta_{31}-64\right), \tag{12}
\end{equation*}
$$

substituting the coefficients (9) into (12) results in $L_{9}^{*}=\frac{736}{35} \neq 0$. Hence the FD2LMM method (10) is of order 8.

Qualitative Properties of Constructed Method

The general expression of the leading term of the local truncation error (Ite) for a method of the form (2) with order p (see [11]) can be written in the form:

$$
\begin{equation*}
l t e(t)=(-1)^{p+1} h^{p+1} \frac{L_{p+1}^{*}}{(p+1)!} D^{p+1} u(t) \tag{13}
\end{equation*}
$$

Qualitative Properties of Constructed Method

Local Truncation Error of the FD2LMM method (10)
Using (13), the local truncation error of FD2LMM method (10) is:

$$
\begin{equation*}
\text { lte }(t)=-h^{9} \frac{736}{35.9!} u^{(9)}(t) . \tag{14}
\end{equation*}
$$

Qualitative Properties of Constructed Method

Theorem (Consistency)
The linear multistep method FD2LMM method (2) is said to be consistent if it has order $p \geq 1,[11]$.

Lemma (Consistency of FD2LMM method (10))
The FD2LMM method (10) is consistent since it has order $p=8>1$.

Qualitative Properties of Constructed Method

The first and second characteristics polynomials of the FD2LMM method (10) are respectively given by
First and Second Characteristics Polynomial

$$
\begin{align*}
\rho(\xi) & =\xi^{2}-1 \tag{15}\\
\sigma_{i}(\xi) & =\sum_{j=0}^{1} \beta_{i j} \xi^{j}, \quad i=0,1,2,3 . \tag{16}
\end{align*}
$$

Qualitative Properties of Constructed Method

Using (15) and (16), the stability polynomial of the FD2LMM method (10) is

Stability Polynomial of FD2LMM method (10)

$$
\begin{align*}
\pi(\xi, \bar{h})= & \rho(\xi)-\sum_{i=0}^{3} \bar{h}^{i+1} \sigma_{i}(\xi) \\
= & \frac{1}{105}\left(-48 \bar{h}^{4} \xi-22 \bar{h}^{4}+400 \bar{h}^{3} \xi-300 \bar{h}^{3}-\right. \\
& 1920 \bar{h}^{2} \xi-1650 \bar{h}^{2}+3360 \bar{h} \xi- \\
& \left.3570 \bar{h}+105 \xi^{2}-105\right) \tag{17}
\end{align*}
$$

Numerical Example 1

The nonlinear system from [13] and also studied in [10].

Problem 1

$$
\begin{align*}
& u_{1}^{\prime}(t)=-1002 u_{1}+1000 u_{2} ; u_{1}(0)=1 \\
& u_{2}^{\prime}(t)=u_{2}-u_{2}\left(1+u_{2}\right) ; u_{2}(0)=1 \tag{18}
\end{align*}
$$

Exact Solution

$$
\begin{align*}
& u_{1}(t)=\exp (-2 t) \\
& u_{2}(t)=\exp (-t) \tag{19}
\end{align*}
$$

Numerical Results :: Problem 1

t	h	Absolute Error			
		Wu-Xia		FD2LMM	
		$u_{1}(t)$	$u_{2}(t)$	$u_{1}(t)$	$u_{2}(t)$
1	0.002	2.5606×10^{-07}	8.0150×10^{-08}	8.3267×10^{-17}	4.4409×10^{-16}
10	0.001	5.5468×10^{-16}	6.0936×10^{-12}	2.7756×10^{-17}	2.7756×10^{-16}

Table 1: Absolute errors of "FD2LMM" compared with "Wu-Xia" method, [13] at $t=1$ and $t=10$ on problem 1

Numerical Results :: Problem 1

t	h	Absolute Error			
		SDAM		FD2LMM	
		$u_{1}(t)$	$u_{2}(t)$	$u_{1}(t)$	$u_{2}(t)$
1	0.008	1.6348×10^{-14}	0.0000×10^{00}	1.1102×10^{-16}	0.0000×10^{00}
10	0.006	2.4815×10^{-24}	2.0329×10^{-20}	4.1359×10^{-24}	4.0658×10^{-20}

Table 2: Absolute errors of "FD2LMM" compared with "SDAM" method, [10] at $t=1$ and $t=10$ on problem 1

Numerical Example 2

The initial value problem considered in [4] on the range $0 \leq t \leq 1$.

Problem 2

$$
\begin{array}{ll}
u_{1}^{\prime}=-21 u_{1}+19 u_{2}-20 u_{3}, \quad u_{1}(0)=1 \\
u_{2}^{\prime}=19 u_{1}-21 u_{2}+20 u_{3}, & u_{2}(0)=0 \\
u_{3}^{\prime}=40 u_{1}-40 u_{2}-40 u_{3}, \quad u_{3}(0)=-1 .
\end{array}
$$

Numerical Example 2

Exact Solution

$$
\begin{aligned}
& u(t)_{1}=\frac{1}{2} e^{-40 t}\left(e^{38 t}+\sin (40 t)+\cos (40 t)\right) \\
& u(t)_{2}=-\frac{1}{2} e^{-40 t}\left(e^{38 t}-\sin (40 t)-\cos (40 t)\right) \\
& u(t)_{3}=-e^{-40 t}(\cos (40 t)-\sin (40 t)) .
\end{aligned}
$$

Numerical Results :: Problem 2

	Relative Error				
	FD2LMM	SDAM	Amodio	SDAM	Amodio
Step	$k=2(p=8)$	$k=2(p=6)$	$k=5(p=6)$	$k=3(p=8)$	$k=7(p=8)$
20	1.5×10^{-7}	2.9×10^{-3}	5.7×10^{-2}	7.5×10^{-4}	2.9×10^{-2}
40	1.2×10^{-9}	7.3×10^{-5}	8.7×10^{-3}	1.9×10^{-5}	6.8×10^{-3}
80	7.2×10^{-12}	1.8×10^{-6}	4.9×10^{-4}	1.4×10^{-7}	7.8×10^{-5}
160	2.9×10^{-15}	3.3×10^{-8}	1.2×10^{-5}	6.4×10^{-10}	4.7×10^{-7}
320	2.3×10^{-15}	5.1×10^{-10}	2.2×10^{-7}	2.5×10^{-12}	2.3×10^{-9}
640	1.1×10^{-16}	7.7×10^{-12}	3.7×10^{-9}	9.8×10^{-15}	1.3×10^{-11}

Table 3: Relative errors of "FD2LMM" compared with the methods (SDAM)

Conclusion

- A fourth-derivative two-step linear multistep method (FD2LMM) was constructed.

Conclusion

- A fourth-derivative two-step linear multistep method (FD2LMM) was constructed.
- The maximal order criteria was used for the construction.

Conclusion

- A fourth-derivative two-step linear multistep method (FD2LMM) was constructed.
- The maximal order criteria was used for the construction.
- The (FD2LMM) method is consistent and has good stability property.

Conclusion

- A fourth-derivative two-step linear multistep method (FD2LMM) was constructed.
- The maximal order criteria was used for the construction.
- The (FD2LMM) method is consistent and has good stability property.
- The accuracy and efficiency of the (FD2LMM) method compared with methods in the literature is obvious from the numerical examples.

Bibliography I

- Akanbi, M.A. On 3-stage Geometric Explicit Runge-Kutta Method for Singular Autonomous Initial Value Problems in Ordinary Differential Equations, Computing, Vol(92), pp: 243-ât" "263, (2011).
E. Akanbi, M.A., Okunuga S. A. On Region of Absolute Stability and Convergence of 3-Stage Multiderivative Explicit Runge-Kutta Methods, Journal of the Sciencea Research and Development Institute, Vol. (10), pp. 83-100, (2006).

Bibliography II

- Akanbi, M.A., Okunuga S. A., Sofoluwe A. B. Error Bounds for 2-Stage Multiderivative Explicit Runge-Kutta Methods, Advances in Modelling and Analysis, Vol. (45), No.(2), pp. 57-72, (2008).
E. Amodio P. and Mazzia F., Boundary value methods based on Adams, Appl. Numer. Math., Vol.(18), pp:23-35, (1995).
E. Butcher, J.C. Numerical Methods for Ordinary Differential Equations. Wiley, (2008).

Bibliography III

E. Cash J.R., On exponentially fitting of composite multiderivative Linear Methods, SIAM J. Numerical Anal., Vol.18(5), pp: 808-821, (1981)
E Dalquist G. G., Numerical integration of ordinary differential equations., Math. Scand. Vol.(4), pp: 69-86, (1956).
E Goeken D., Johnson O., Fifth-Order Runge-Kutta with Higher Order Derivative Approximations, Electronic Journal of Differential Equations, Vol.(2), pp:1-9, (1999).
E. Henrici P. Discrete Variable Methods in ODEs, John Wiley, New York, (1962).

Bibliography IV

- Jator S. N., Sahi, R. K., Boundary value technique for initial value problems based on Adamstype second derivative methods, International Journal of Mathematical Education in Science and Technology, First published on: 07 June 2010 (iFirst)
- Lambert, J.D., Computational Methods in ODEs, Wiley, New York. (1973).
E Lambert, J.D., Numerical methods for ordinary differential systems, Wiley, New York. (1973).

Bibliography V

- Wu X. and J. Xia, Two low accuracy methods for stiff systems, Appl. Math. Comput., Vol.(123), pp:141-153, (2001).
- Wusu A.S, Okunuga S.A and Sofoluwe A.B., A Third-Order Harmonic Explicit Runge-Kutta Method for Autonomous Initial Value Problems, Global Journal of Pure and Applied Mathematics, Vol.(8) No.(4), pp: 441-451, (2012).
E. Wusu A.S. and Akanbi M.A., A Three-Stage Multiderivative Explicit Runge-Kutta Method, American Journal of Computational Mathematics, Vol.(3), pp: 121-126, (2013).

Bibliography VI

E- Wusu A.S., Akanbi M.A. and Fatimah B.O. On the Derivation and Implementation of a Four Stage Harmonic Explicit Runge-Kutta Method, Applied Mathematics, Vol.(6),(2015).

Thank You

