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Introduction

Problem Considered
The first-order initial value problem

u′ = f(t,u), t ∈ [t0, T ] , u(t0) = η0 (1)

where f : R× Rn 7→ Rn, u, η0 ∈ Rn and t0, T ∈ R.
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Construction of Method

Form of Method to be Constructed

un+2 − un =
3∑
i=0

hi+1
1∑
j=0

βijf
(i)
n+j

= h (β00fn + β01fn+1) +

h2
(
β10f

(1)
n + β11f

(1)
n+1

)
+

h3
(
β20f

(2)
n + β21f

(2)
n+1

)
+

h4
(
β30f

(3)
n + β31f

(3)
n+1

)
(2)
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Construction of Method

Associated Linear Difference Operator

L[h, γ]u(t) = u(t+ 2h)− u(t)−
h
(
β00u

(1)(t) + β01u
(1)(t+ h)

)
−

h2
(
β10u

(2)(t) + β11u
(2)(t+ h)

)
−

h3
(
β20u

(3)(t) + β21u
(3)(t+ h)

)
−

h4
(
β30u

(4)(t) + β31u
(4)(t+ h)

)
(3)

γ := (β00, β01, β10, β11, β20, β21, β30, β31)
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Construction of Method

Corresponding Dimensionless Moment

L∗m(γ) := h−mL[h, γ]tm|t=0 (4)

Associated Algebraic System
Examining the algebraic system

L∗m(γ) = 0, m = 0, 1, 2, · · · ,M − 1 (5)

to find out the maximal M for which it is compatible.
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Construction of Method

Resulting Algebraic System from (5)

L∗
1(γ) = −β00 − β01 + 2 = 0

L∗
2(γ) = −2 (β01 + β10 + β11 − 2) = 0

L∗
3(γ) = −3β01 − 6β11 − 6β20 − 6β21 + 8 = 0

L∗
4(γ) = −4 (β01 + 3β11 + 6β21 + 6β30 + 6β31 − 4) = 0

L∗
5(γ) = −5β01 − 4 (5β11 + 15β21 + 30β31 − 8) = 0

L∗
6(γ) = −2 (3β01 + 15β11 + 60β21 + 180β31 − 32) = 0

L∗
7(γ) = −7β01 − 42β11 − 210β21 − 840β31 + 128 = 0

L∗
8(γ) = −8 (β01 + 7β11 + 42β21 + 210β31 − 32) = 0

L∗
9(γ) = −9β01 − 8 (9β11 + 63β21 + 378β31 − 64) = 0.



(6)
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Construction of Method

Compatibility
The system (6) is compatible for the set

{L∗1(γ) = 0, L∗2(γ) = 0, · · · , L∗8(γ) = 0} (7)

Maximal M for Compatibility
The maximal M for which (5) is compatible is 9.

Classical Fitting Space{
1, t, t2, t3, t4, t5, t6, t7, t8, t9

}
(8)
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Construction of Method

Solving (7) results in

Coefficients of Constructed Method

β00 = 34, β20 = 20
7 ,

β01 = −32, β21 = −80
21 ,

β10 = 110
7 , β30 = 22

105 ,

β11 = 128
7 , β31 = 16

35


(9)
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Construction of Method

Nomenclature of Constructed Method (FD2LMM)
Fourth-Derivative Two-Step Explicit Linear Multistep Method

Constructed Method

un+2 − un = h (34fn − 32fn+1) +
1

7
h2
(

110f (1)n + 128f
(1)
n+1

)
+

1

21
h3
(

60f (2)n − 80f
(2)
n+1

)
+

1

105
h4
(

22f (3)n + 48f
(3)
n+1

)
(10)
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Qualitative Properties of Constructed Method

Lemma (Order of the FD2LMM method)
The FD2LMM method (10), and hence the associated operator
L∗m defined by (4) have order p if and only if

L∗r ≡ 0, r = 0, 1, · · · , p, L∗r+1 6≡ 0. (11)
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Qualitative Properties of Constructed Method

Theorem
The FD2LMM method (10) is of order 8.

Proof
Since with (9), L∗m = 0 for m = 0, 1, · · · , 8, and

L∗9 := −9β01 − 8 (9β11 + 63β21 + 378β31 − 64) , (12)

substituting the coefficients (9) into (12) results in L∗9 = 736
35 6= 0.

Hence the FD2LMM method (10) is of order 8.
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Qualitative Properties of Constructed Method

The general expression of the leading term of the local
truncation error (lte) for a method of the form (2) with order p
(see [11]) can be written in the form:

lte(t) = (−1)p+1hp+1
L∗p+1

(p+ 1)!
Dp+1u(t). (13)
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Qualitative Properties of Constructed Method

Local Truncation Error of the FD2LMM method (10)
Using (13), the local truncation error of FD2LMM method (10)
is:

lte(t) = −h9 736

35.9!
u(9)(t). (14)
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Qualitative Properties of Constructed Method

Theorem (Consistency)
The linear multistep method FD2LMM method (2) is said to be
consistent if it has order p ≥ 1, [11].

Lemma (Consistency of FD2LMM method (10))
The FD2LMM method (10) is consistent since it has order
p = 8 > 1.
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Qualitative Properties of Constructed Method

The first and second characteristics polynomials of the
FD2LMM method (10) are respectively given by

First and Second Characteristics Polynomial

ρ(ξ) = ξ2 − 1 (15)

σi(ξ) =
1∑
j=0

βijξ
j, i = 0, 1, 2, 3. (16)
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Qualitative Properties of Constructed Method

Using (15) and (16), the stability polynomial of the FD2LMM
method (10) is

Stability Polynomial of FD2LMM method (10)

π(ξ, h̄) = ρ(ξ)−
3∑
i=0

h̄i+1σi(ξ)

=
1

105

(
−48h̄4ξ − 22h̄4 + 400h̄3ξ − 300h̄3−

1920h̄2ξ − 1650h̄2 + 3360h̄ξ −
3570h̄+ 105ξ2 − 105

)
(17)
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Numerical Example 1

The nonlinear system from [13] and also studied in [10].

Problem 1
u′1(t) = −1002u1 + 1000u2; u1(0) = 1

u′2(t) = u2 − u2(1 + u2); u2(0) = 1
(18)

Exact Solution
u1(t) = exp(−2t)

u2(t) = exp(−t) (19)
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Numerical Results :: Problem 1

Absolute Error

Wu-Xia FD2LMM

t h u1(t) u2(t) u1(t) u2(t)

1 0.002 2.5606× 10−07 8.0150× 10−08 8.3267× 10−17 4.4409× 10−16

10 0.001 5.5468× 10−16 6.0936× 10−12 2.7756× 10−17 2.7756× 10−16

Table 1: Absolute errors of "FD2LMM" compared with "Wu-Xia" method,
[13] at t=1 and t=10 on problem 1
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Numerical Results :: Problem 1

Absolute Error

SDAM FD2LMM

t h u1(t) u2(t) u1(t) u2(t)

1 0.008 1.6348× 10−14 0.0000× 1000 1.1102× 10−16 0.0000× 1000

10 0.006 2.4815× 10−24 2.0329× 10−20 4.1359× 10−24 4.0658× 10−20

Table 2: Absolute errors of "FD2LMM" compared with "SDAM" method, [10]
at t=1 and t=10 on problem 1
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Numerical Example 2

The initial value problem considered in [4] on the range
0 ≤ t ≤ 1.

Problem 2
u′1 = −21u1 + 19u2 − 20u3, u1(0) = 1

u′2 = 19u1 − 21u2 + 20u3, u2(0) = 0

u′3 = 40u1 − 40u2 − 40u3, u3(0) = −1.
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Numerical Example 2

Exact Solution

u(t)1 =
1

2
e−40t

(
e38t + sin(40t) + cos(40t)

)
u(t)2 = −1

2
e−40t

(
e38t − sin(40t)− cos(40t)

)
u(t)3 = −e−40t(cos(40t)− sin(40t)).
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Numerical Results :: Problem 2

Relative Error

FD2LMM SDAM Amodio SDAM Amodio

Step k = 2(p = 8) k = 2(p = 6) k = 5(p = 6) k = 3(p = 8) k = 7(p = 8)

20 1.5× 10−7 2.9× 10−3 5.7× 10−2 7.5× 10−4 2.9× 10−2

40 1.2× 10−9 7.3× 10−5 8.7× 10−3 1.9× 10−5 6.8× 10−3

80 7.2× 10−12 1.8× 10−6 4.9× 10−4 1.4× 10−7 7.8× 10−5

160 2.9× 10−15 3.3× 10−8 1.2× 10−5 6.4× 10−10 4.7× 10−7

320 2.3× 10−15 5.1× 10−10 2.2× 10−7 2.5× 10−12 2.3× 10−9

640 1.1× 10−16 7.7× 10−12 3.7× 10−9 9.8× 10−15 1.3× 10−11

Table 3: Relative errors of "FD2LMM" compared with the methods (SDAM)
of [10] and (Amodio) [4] for problem 1Wusu A. S. & Akanbi M. A. Fourth-Derivative LMM 23/31



Conclusion

• A fourth-derivative two-step linear multistep method
(FD2LMM) was constructed.

• The maximal order criteria was used for the construction.

• The (FD2LMM) method is consistent and has good
stability property.

• The accuracy and efficiency of the (FD2LMM) method
compared with methods in the literature is obvious from
the numerical examples.
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