Stability and Convergence of Two-Step Obrechkoff Scheme For Second-Order Two-Point Boundary Value Problem

A. O. Bosede ${ }^{1} \quad$ A. S. Wusu ${ }^{2}$ M. A. Akanbi ${ }^{3}$

1,2,3 Department of Mathematics
Lagos State University
October 13, 2017

Outline

(1) Introduction
(2) Some Properties of Matrices
(3) Convergence Analysis
(4) Stability Analysis
(5) Conclusion

Introduction

Problem Considered

$$
\begin{equation*}
u^{\prime \prime}=f(t, u), \quad a<x<b, \quad u(a)=\eta_{1}, u(b)=\eta_{2} \tag{1}
\end{equation*}
$$

Method Under Consideration

$$
\begin{align*}
& u_{n-1}-2 u_{n}+u_{n+1}= \\
& \frac{1}{252} h^{2}\left(11 f_{n-1}+230 f_{n}+11 f_{n+1}\right)- \\
& \quad \frac{1}{15120} h^{4}\left(13 f_{n-1}^{(2)}-626 f_{n}^{(2)}+13 f_{n+1}^{(2)}\right) \tag{2}
\end{align*}
$$

Aim

Establish conditions for convergence and stability of (2) when applied to (1).

Some Properties of Matrices

Definition (Tridiagonal Matrice)

A matrix $\mathbf{A}=\left(a_{i j}\right)$ is tridiagonal if $a_{i j}=0$, whenever $|i-j|>1$.

Definition (Irreducible Matrice)

A tridiagonal matrix $\mathbf{A}=\left(a_{i j}\right)$, is irreducible if and only if $a_{i, i-1} \neq 0, i=2,3, \cdot, N$ and $a_{i, i+1} \neq 0, i=1,2, \cdots, N-1$

Definition (Diagonally Dominant Matrice)

A tridiagonal matrix $\mathbf{A}=\left(a_{i j}\right)$, is diagonally dominant if

$$
\left|a_{i i}\right|=\sum_{\substack{j=1 \\ i \neq j}}^{n}\left|a_{i j}\right|, \quad i=1,2, \cdot, N
$$

Some Properties of Matrices

Definition (Irreducibly Diagonally Dominant Matrice)

A matrix $\mathbf{A}=\left(a_{i j}\right)$, is said to be irreducibly diagonally dominant, if it is irreducible and diagonally dominant with inequality being satisfied for at least one i.

Theorem

A matrix $\mathbf{A}=\left(a_{i j}\right)$, is monotone if $\mathbf{A z} \geq \mathbf{0} \Rightarrow \mathbf{z} \geq \mathbf{0}$.
The main properties of a monotone matrix are as follows:

- The monotone matrix \mathbf{A} is nonsingular
- A matrix \mathbf{A} is monotone if and only if $\mathbf{A}^{-1} \geq 0$

Theorem

If a matrix \mathbf{A} is irreducibly diagonally dominant and has nonpositive off-diagonal elements, then \mathbf{A} is monotone

Convergence Analysis

Applying (2) to (1) yields the difference scheme

$$
\begin{align*}
& -u_{n-1}+2 u_{n}-u_{n+1}+ \\
& \frac{1}{252} h^{2}\left(11 f_{n-1}+230 f_{n}+11 f_{n+1}\right)- \\
& \frac{1}{15120} h^{4}\left(13 f_{n-1}^{(2)}-626 f_{n}^{(2)}+13 f_{n+1}^{(2)}\right)=0 \\
& n=1,2, \cdots, N \tag{3}
\end{align*}
$$

and the boundary condition becomes

$$
\begin{equation*}
u_{0}=\eta_{1}, \quad u_{N+1}=\eta_{2} \tag{4}
\end{equation*}
$$

Convergence Analysis

From (3), the exact solution $u(t)$ of (1) satisfies

$$
\begin{align*}
& -u\left(t_{n-1}\right)+2 u\left(t_{n}\right)-u\left(t_{n+1}\right)+ \\
& \frac{1}{252} h^{2}\left(11 f\left(t_{n-1}, u\left(t_{n-1}\right)\right)+230 f\left(t_{n}, u\left(t_{n}\right)\right)+\right. \\
& \left.11 f\left(t_{n+1}, u\left(t_{n+1}\right)\right)\right)- \\
& \frac{1}{15120} h^{4}\left(13 f^{(2)}\left(t_{n-1}, u\left(t_{n-1}\right)\right)-626 f^{(2)}\left(t_{n}, u\left(t_{n}\right)\right)+\right. \\
& \left.13 f^{(2)}\left(t_{n+1}, u\left(t_{n+1}\right)\right)\right)+ \\
& T_{n}=0 \tag{5}
\end{align*}
$$

where T_{n} is the truncation error.

Convergence Analysis

Subtracting (5) from (3), applying the Mean Value Theorem and substituting $\varepsilon_{n}=u_{n}-u\left(t_{n}\right)$, the error equation is obtained as

Error Equation

$$
\begin{align*}
& -\varepsilon_{n-1}+2 \varepsilon_{n}-\varepsilon_{n+1}+ \\
& \frac{1}{252} h^{2}\left(11 \varepsilon_{n-1} f_{u_{n-1}}+230 \varepsilon_{n} f_{u_{n}}+11 \varepsilon_{n+1} f_{u_{n+1}}\right)- \\
& \quad \frac{1}{15120} h^{4}\left(13 \varepsilon_{n-1} f_{u_{n-1}}^{(2)}-626 \varepsilon_{n} f_{u_{n}}^{(2)}+13 \varepsilon_{n+1} f_{u_{n+1}}^{(2)}\right)- \\
& \quad T_{n}=0, \quad n=1,2, \cdots, N \tag{6}
\end{align*}
$$

where the truncation error is given by

Truncation Error

$$
\begin{equation*}
T=\frac{59}{76204800} h^{10} u^{10}(\xi), \text { and }\|\mathrm{T}\| \leq \frac{59}{76204800} h^{10} \max _{\xi \in[a, b]}\left|u^{(10)}(\xi)\right| \tag{7}
\end{equation*}
$$

Convergence Analysis

In matrix notation, (6) can be written as

$$
\begin{equation*}
\mathrm{ME}=\mathrm{T} \tag{8}
\end{equation*}
$$

where

$$
\mathbf{M}=\mathbf{J}+\mathbf{K}+\mathbf{L}
$$

$$
\mathbf{E}=\left[\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{N}\right]^{T}
$$

$$
\mathbf{T}=\left[T_{1}, T_{2}, \cdots, T_{N}\right]^{T}
$$

Convergence Analysis

$$
\mathbf{J}=\left(\begin{array}{ccccc}
2 & -1 & & & \mathbf{0} \\
-1 & 2 & -1 & & \\
& -1 & 2 & -1 & \\
& & \ddots & & \\
0 & & & -1 & 2
\end{array}\right)
$$

Convergence Analysis

$$
\mathbf{K}=\frac{h^{2}}{252}\left(\begin{array}{ccccc}
230 f_{u_{1}} & 11 f_{u_{2}} & & & \mathbf{0} \tag{10}\\
11 f_{u_{1}} & 230 f_{u_{2}} & 11 f_{u_{3}} & & \\
& 11 f_{u_{2}} & 230 f_{u_{3}} & 11 f_{u_{4}} & \\
& & \ddots & & \\
0 & & & 11 f_{u_{N-1}} & 230 f_{u_{N}}
\end{array}\right)
$$

Convergence Analysis

$$
\mathbf{L}=\frac{h^{4}}{15120}\left(\begin{array}{ccccc}
626 f_{u_{1}}^{(2)} & -13 f_{u_{2}}^{(2)} & & & 0 \\
-13 f_{u_{1}}^{(2)} & 626 f_{u_{2}}^{(2)} & -13 f_{u_{3}}^{(2)} & & \\
& -13 f_{u_{2}}^{(2)} & 626 f_{u_{3}}^{(2)} & -13 f_{u_{4}}^{(2)} & \\
& & \ddots & & \\
0 & & & -13 f_{u_{N-1}}^{(2)} & 626 f_{u_{N}}^{(2)}
\end{array}\right)
$$

Convergence Analysis

Since

$$
f_{u_{n}}>0, n=1,2, \cdots N
$$

then

$$
\mathbf{K}+\mathbf{L} \geq \mathbf{0}, \quad \text { and } \quad \mathbf{M}=\mathbf{J}+\mathbf{K}+\mathbf{L} \geq \mathbf{J} .
$$

Clearly, J is monotone.

Convergence Analysis

Off-diagonal elements of M

$$
\begin{equation*}
-1+\frac{11}{252} h^{2} f_{u_{n-1}}-\frac{13}{15120} h^{4} f_{u_{n-1}}^{(2)} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
-1+\frac{11}{252} h^{2} f_{u_{n+1}}-\frac{13}{15120} h^{4} f_{u_{n+1}}^{(2)} \tag{13}
\end{equation*}
$$

Diagonal elements of M

$$
\begin{equation*}
2+\frac{230}{252} h^{2} f_{u_{n}}+\frac{626}{15120} h^{4} f_{u_{n}}^{(2)} \tag{14}
\end{equation*}
$$

For M to have non-negative off diagonal elements, h must be chosen such that both (12) and (13) are respectively non-negative.

Convergence Analysis

Choice of h

$$
\begin{equation*}
-1+\frac{11}{252} h^{2} f_{u}-\frac{13}{15120} h^{4} f_{u}^{(2)}<0 \quad \text { over }[a, b] \tag{15}
\end{equation*}
$$

and

$$
\begin{align*}
2+ & \frac{230}{252} h^{2} f_{u_{n}}+\frac{626}{15120} h^{4} f_{u_{n}}^{(2)} \geq \\
\mid & \left\lvert\, \begin{array}{l}
\left.-1+\frac{11}{252} h^{2} f_{u_{n-1}}-\frac{13}{15120} h^{4} f_{u_{n-1}}^{(2)} \right\rvert\,+ \\
\\
\left|-1+\frac{11}{252} h^{2} f_{u_{n+1}}-\frac{13}{15120} h^{4} f_{u_{n+1}}^{(2)}\right|
\end{array}\right.
\end{align*}
$$

M is irreducibly diagonally dominant and monotone following (15) and (16)

Since $\mathbf{M} \geq \mathbf{J}$, we have that $\mathbf{0}<\mathbf{M}^{-1} \leq \mathbf{J}^{-1}$.

Convergence Analysis

From (8),

$$
\begin{align*}
\mathbf{E} & =\mathbf{M}^{-1} \mathbf{T} \\
\Rightarrow\|\mathbf{E}\| & \leq\left\|\mathbf{M}^{-1}\right\|\|\mathbf{T}\| \leq\left\|\mathbf{J}^{-1}\right\|\|\mathbf{T}\| \\
& \leq\left(\frac{(b-a)^{2}}{8 h^{2}}\right)\left(\frac{59}{76204800} h^{10} \max _{\xi \in[a, b]}\left|u^{(10)}(\xi)\right|\right) \\
& =\frac{59(b-a)^{2}}{609638400} h^{8} \max _{\xi \in[a, b]}\left|u^{(10)}(\xi)\right| \tag{17}
\end{align*}
$$

It follows that the method is of order 8 and

$$
\begin{equation*}
\lim _{h \rightarrow 0}\|\mathbf{E}\|=0 \quad \text { or } \quad \lim _{h \rightarrow 0} u_{j}=u\left(t_{j}\right) \tag{18}
\end{equation*}
$$

This establishes the convergence of (2).

Stability Analysis

Theorem

A method with stability function $R_{m m}\left(\lambda^{2}\right)$ has an interval of periodicity $\left(0, \lambda_{0}^{2}\right)$ if $\left|R_{m m}\left(\lambda^{2}\right)\right|<1$ for $0<\lambda^{2}<\lambda_{0}^{2}$.

Theorem

A method with stability function $R_{m m}\left(\lambda^{2}\right)$ is P-stable if $\left|R_{m m}\left(\lambda^{2}\right)\right|<1$ for all real $\lambda \neq 0$.

Stability Analysis

Applying (2) to the test problem

$$
\begin{equation*}
u^{\prime \prime}=-k^{2} u, \tag{19}
\end{equation*}
$$

results in

$$
\begin{align*}
& u_{n-1}-2 u_{n}+u_{n+1}= \\
& -\frac{1}{252} \lambda^{2}\left(11 u_{n-1}+230 u_{n}+11 u_{n+1}\right)- \\
& \quad \frac{1}{15120} \lambda^{4}\left(13 u_{n-1}-626 u_{n}+13 u_{n+1}\right) \tag{20}
\end{align*}
$$

where $\lambda=k h$.

Stability Analysis

Rearranging and simplifying (20) gives

$$
u_{n-1}-2 R_{22} u_{n}+u_{n+1}=0
$$

where

$$
\begin{equation*}
R_{22}\left(\lambda^{2}\right)=\frac{1-\frac{115}{252} \lambda^{2}+\frac{313}{15120} \lambda^{4}}{1+\frac{11}{252} \lambda^{2}+\frac{13}{15120} \lambda^{4}} . \tag{21}
\end{equation*}
$$

The rational expression (21) is the stability function of (2).

Stability Analysis

Plot of Stability Function

Figure 1: The stability function R_{22} as a function of λ^{2}

From the above, it is clear that the (2) is not P-stable but has a large interval of periodicity, i.e [0, 25.2]

Conclusion

Using some properties of matrices, the necessary conditions for the two-step Obrechkoff method (2) to be convergent has been established.

It has been shown that the method is not P-stable but has a large interval of periodicity.

